Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38654386

RESUMO

The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.

2.
Stem Cell Res ; 76: 103375, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490135

RESUMO

Myotonic dystrophy type 1 (DM1) is the most prevalent adult-onset muscular dystrophy affecting 1 in 8,000 individuals. It is characterized by multisystemic symptoms, primarily myopathy. The root cause of DM1 is a heterozygous CTG triplet expansion beyond the normal size threshold in the non-coding region of the DM1 protein kinase gene (DMPK). In our study, we generated and characterized three distinct DM1 induced pluripotent stem cell (iPSC) lines with CTG repeat expansions ranging from 900 to 2000 in the DMPK gene. These iPSC lines maintained normal karyotypes, exhibited distinctive colony morphology, robustly expressed pluripotency markers, differentiated into the three primary germ layers, and lacked residual viral vectors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos , Experimentação Humana Terapêutica , Linhagem Celular , Miotonina Proteína Quinase/genética
3.
J Am Heart Assoc ; 13(4): e032071, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348789

RESUMO

BACKGROUND: Although accumulating data indicate that IL-6 (interleukin-6) can promote heart rate-corrected QT interval (QTc) prolongation via direct and indirect effects on cardiac electrophysiology, current evidence comes from basic investigations and small clinical studies only. Therefore, IL-6 is still largely ignored in the clinical management of long-QT syndrome and related arrhythmias. The aim of this study was to estimate the risk of QTc prolongation associated with elevated IL-6 levels in a large population of unselected subjects. METHODS AND RESULTS: An observational study using the Veterans Affairs Informatics and Computing Infrastructure was performed. Participants were US veterans who had an ECG and were tested for IL-6. Descriptive statistics and univariate and multivariate regression analyses were performed to study the relationship between IL-6 and QTc prolongation risk. Study population comprised 1085 individuals, 306 showing normal (<5 pg/mL), 376 moderately high (5-25 pg/mL), and 403 high (>25 pg/mL) IL-6 levels. Subjects with elevated IL-6 showed a concentration-dependent increase in the prevalence of QTc prolongation, and those presenting with QTc prolongation exhibited higher circulating IL-6 levels. Stepwise multivariate regression analyses demonstrated that increased IL-6 level was significantly associated with a risk of QTc prolongation up to 2 times the odds of the reference category of QTc (e.g. QTc >470 ms men/480 ms women ms: odds ratio, 2.28 [95% CI, 1.12-4.50] for IL-6 >25 pg/mL) regardless of the underlying cause. Specifically, the mean QTc increase observed in the presence of elevated IL-6 was quantitatively comparable (IL-6 >25 pg/mL:+6.7 ms) to that of major recognized QT-prolonging risk factors, such as hypokalemia and history of myocardial infarction. CONCLUSIONS: Our data provide evidence that a high circulating IL-6 level is a robust risk factor for QTc prolongation in a large cohort of US veterans, supporting a potentially important arrhythmogenic role for this cytokine in the general population.


Assuntos
Síndrome do QT Longo , Veteranos , Masculino , Humanos , Feminino , Interleucina-6 , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/epidemiologia , Síndrome do QT Longo/etiologia , Fatores de Risco , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/complicações , Eletrocardiografia
4.
Front Cardiovasc Med ; 11: 1351496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420267

RESUMO

Heart failure (HF) is recognized as an epidemic in the contemporary world, impacting around 1%-2% of the adult population and affecting around 6 million Americans. HF remains a major cause of mortality, morbidity, and poor quality of life. Several therapies are used to treat HF and improve the survival of patients; however, despite these substantial improvements in treating HF, the incidence of HF is increasing rapidly, posing a significant burden to human health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a better understanding of the mechanisms involved in HF. Among the most serious manifestations associated with HF is arrhythmia due to the electrophysiological changes within the cardiomyocyte. Among these electrophysiological changes, disruptions in sodium and potassium currents' function and trafficking, as well as calcium handling, all of which impact arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring, organization, and recycling of ion channels at the plasma membrane seem to be significant contributors to ion channels dysfunction in HF. Variants, microtubule alterations, or disturbances of anchoring proteins lead to ion channel trafficking defects and the alteration of the cardiomyocyte's electrophysiology. Understanding the mechanisms of ion channels trafficking could provide new therapeutic approaches for the treatment of HF. This review provides an overview of the recent advances in ion channel trafficking in HF.

5.
Autism ; 28(1): 107-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36800902

RESUMO

LAY ABSTRACT: It is very important to understand the needs of caregivers to be able to empower caregivers and to develop or improve services around the world. Therefore, research in different regions is needed to understand differences in caregivers needs between countries, but also between areas within countries. This study investigated differences in needs and service use between caregivers of autistic children in Morocco, living in urban and rural areas. A total of 131 Moroccan caregivers of autistic children took part in the study and responded to an interview survey. The results showed both similarities and differences between urban and rural living caregivers' challenges and needs. Autistic children from urban communities were much more likely to receive intervention and attend school than children from rural communities, even though age and verbal skills of the two groups of children were comparable. Caregivers expressed similar needs for improved care and education, but different challenges in caring. Limited autonomy skills in children were more challenging to rural caregivers, while limited social-communicational skills were more challenging to urban caregivers. These differences may inform healthcare policy-makers and program developers. Adaptive interventions are important to respond to regional needs, resources, and practices. In addition, the results showed the importance of addressing challenges as experienced by caregivers such as costs related to care, barriers in access to information, or stigma. Addressing these issues may help reduce both global and within-country differences in autism care.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Cuidadores , Transtorno Autístico/terapia , População Rural , Marrocos , Satisfação Pessoal
6.
Front Physiol ; 14: 1258318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791351

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic disorder that causes muscle weakness and myotonia. In DM1 patients, cardiac electrical manifestations include conduction defects and atrial fibrillation. DM1 results in the expansion of a CTG transcribed into CUG-containing transcripts that accumulate in the nucleus as RNA foci and alter the activity of several splicing regulators. The underlying pathological mechanism involves two key RNA-binding proteins (MBNL and CELF) with expanded CUG repeats that sequester MBNL and alter the activity of CELF resulting in spliceopathy and abnormal electrical activity. In the present study, we identified two DM1 patients with heart conduction abnormalities and characterized their hiPSC lines. Two differentiation protocols were used to investigate both the ventricular and the atrial electrophysiological aspects of DM1 and unveil the impact of the mutation on voltage-gated ion channels, electrical activity, and calcium homeostasis in DM1 cardiomyocytes derived from hiPSCs. Our analysis revealed the presence of molecular hallmarks of DM1, including the accumulation of RNA foci and sequestration of MBNL1 in DM1 hiPSC-CMs. We also observed mis-splicing of SCN5A and haploinsufficiency of DMPK. Furthermore, we conducted separate characterizations of atrial and ventricular electrical activity, conduction properties, and calcium homeostasis. Both DM1 cell lines exhibited reduced density of sodium and calcium currents, prolonged action potential duration, slower conduction velocity, and impaired calcium transient propagation in both ventricular and atrial cardiomyocytes. Notably, arrhythmogenic events were recorded, including both ventricular and atrial arrhythmias were observed in the two DM1 cell lines. These findings enhance our comprehension of the molecular mechanisms underlying DM1 and provide valuable insights into the pathophysiology of ventricular and atrial involvement.

7.
Front Physiol ; 14: 1257682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811496

RESUMO

Introduction: Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the increased number of CTG repeats in 3' UTR of Dystrophia Myotonia Protein Kinase (DMPK) gene. DM1 patients experience conduction abnormalities as well as atrial and ventricular arrhythmias with increased susceptibility to sudden cardiac death. The ionic basis of these electrical abnormalities is poorly understood. Methods: We evaluated the surface electrocardiogram (ECG) and key ion currents underlying the action potential (AP) in a mouse model of DM1, DMSXL, which express over 1000 CTG repeats. Sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), and APs were recorded using the patch-clamp technique. Results: Arrhythmic events on the ECG including sinus bradycardia, conduction defects, and premature ventricular and atrial arrhythmias were observed in DMSXL homozygous mice but not in WT mice. PR interval shortening was observed in homozygous mice while ECG parameters such as QRS duration, and QTc did not change. Further, flecainide prolonged PR, QRS, and QTc visually in DMSXL homozygous mice. At the single ventricular myocyte level, we observed a reduced current density for Ito and ICaL with a positive shift in steady state activation of L-type calcium channels carrying ICaL in DMSXL homozygous mice compared with WT mice. INa densities and action potential duration did not change between DMSXL and WT mice. Conclusion: The reduced current densities of Ito, and ICaL and alterations in gating properties in L-type calcium channels may contribute to the ECG abnormalities in the DMSXL mouse model of DM1. These findings open new avenues for novel targeted therapeutics.

8.
Cells ; 12(17)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681899

RESUMO

Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Eletrofisiologia Cardíaca , Corantes
9.
Front Cardiovasc Med ; 10: 1253479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600027

RESUMO

Cardiovascular diseases are associated with several morbidities and are the most common cause of worldwide disease-related fatalities. Studies show that treatment and outcome-related differences for cardiovascular diseases disproportionately affect minorities in the United States. The emergence of ethnic and racial differences in sudden cardiac death (SCD) and related ion channelopathies complicates cardiovascular disease prevention, diagnosis, management, prognosis, and treatment objectives for patients and physicians alike. This review compiles and synthesizes current research in cardiac ion channelopathies and genetic disorders in Asian populations, an underrepresented population in cardiovascular literature. We first present a brief introduction to SCD, noting relevant observations and statistics from around the world, including Asian populations. We then examined existing differences between Asian and White populations in research, treatment, and outcomes related to cardiac ion channelopathies and SCD, showing progression in thought and research over time for each ion channelopathy. The review also identifies research that explored phenotypic abnormalities, device usage, and risk of death in Asian patients. We touch upon the unique genetic risk factors in Asian populations that lead to cardiac ion channelopathies and SCD while comparing them to White and Western populations, particularly in the United States, where Asians comprise approximately 7% of the total population. We also propose potential solutions such as improving early genetic screening, addressing barriers affecting access to medical care and device utilization, physician training, and patient education on risks.

11.
JACC Basic Transl Sci ; 8(6): 728-750, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426535

RESUMO

Inflammatory activation is increasingly recognized as a nonconventional risk factor for arrhythmias, and experimental studies provided robust evidence that this association is mediated by direct arrhythmogenic effects of proinflammatory cytokines on cardiac cells. Additionally, inflammatory cytokines can favor arrhythmias indirectly through multiple systemic effects. Accumulating data confirm the clinical relevance of these mechanisms; the largest evidence being available for atrial fibrillation, acquired long-QT syndrome, and ventricular arrhythmias. However, clinical management of arrhythmias largely neglects inflammatory cytokines. This review integrates basic science and clinical research to present an updated overview of the topic and provides future directions for patient's management.

12.
Stem Cell Res ; 71: 103148, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37352653

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic neuromuscular disorder that affects many organs, including the heart. DM1 is caused by a heterozygous CTG triplet expansion exceeding the normal size threshold in the non-coding region of the DM1 protein kinase gene (DMPK). We generated and characterized a DM1 iPSC line carrying a 700 CTG repeat expansion as well as a control iPSC line from a healthy individual. The two iPSC lines expressed several pluripotency markers, had the capacity to differentiate into the three primary germ layers, had no residual viral vectors, had normal karyotypes, and had a typical colony morphology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Miotonina Proteína Quinase/genética
13.
JACC Clin Electrophysiol ; 9(8 Pt 3): 1631-1648, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227349

RESUMO

BACKGROUND: In ∼50% of severe atrioventricular blocks (AVBs) occurring in adults <50 years, the underlying etiology remains unknown. Preliminary evidence from case reports suggests that autoimmunity, specifically the presence of circulating anti-Ro/SSA antibodies in the patient (acquired form), in the patient's mother (late-progressive congenital form), or in both (mixed form), could be involved in a fraction of idiopathic AVBs in adults by possibly targeting the L-type calcium channel (Cav1.2) and inhibiting the related current (ICaL). OBJECTIVES: The purpose of this study was to evaluate whether anti-Ro/SSA antibodies are causally implicated in the development of isolated AVBs in adults. METHODS: Thirty-four consecutive patients with isolated AVB of unknown origin and 17 available mothers were prospectively enrolled in a cross-sectional study. Anti-Ro/SSA antibodies were assessed by fluoroenzyme-immunoassay, immuno-Western blotting, and line-blot immunoassay. Purified immunoglobulin-G (IgG) from anti-Ro/SSA-positive and anti-Ro/SSA-negative subjects were tested on ICaL and Cav1.2 expression using tSA201 and HEK293 cells, respectively. Moreover, in 13 AVB patients, the impact of a short course of steroid therapy on AV conduction was evaluated. RESULTS: Anti-Ro/SSA antibodies, particularly anti-Ro/SSA-52kD, were found in 53% of AVB-patients and/or in their mothers, most commonly an acquired or mixed form (two-thirds of cases) without history of autoimmune diseases. Purified IgG from anti-Ro/SSA-positive but not anti-Ro/SSA-negative AVB patients acutely inhibited ICaL and chronically down-regulated Cav1.2 expression. Moreover, anti-Ro/SSA-positive sera showed high reactivity with peptides corresponding to the Cav1.2 channel pore-forming region. Finally, steroid therapy rapidly improved AV conduction in AVB-patients with circulating anti-Ro/SSA antibodies but not in those without. CONCLUSIONS: Our study points to anti-Ro/SSA antibodies as a novel, epidemiologically relevant and potentially reversible cause of isolated AVB in adults, via an autoimmune-mediated functional interference with the L-type calcium channels. These findings have significant impact on antiarrhythmic therapies by avoiding or delaying pacemaker implantation.


Assuntos
Bloqueio Atrioventricular , Humanos , Adulto , Canais de Cálcio , Estudos Transversais , Células HEK293 , Imunoglobulina G/farmacologia , Esteroides
14.
Front Physiol ; 14: 1144069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025382

RESUMO

Ca2+ plays a crucial role in excitation-contraction coupling in cardiac myocytes. Dysfunctional Ca2+ regulation alters the force of contraction and causes cardiac arrhythmias. Ca2+ entry into cardiomyocytes is mediated mainly through L-type Ca2+ channels, leading to the subsequent Ca2+ release from the sarcoplasmic reticulum. L-type Ca2+ channels are composed of the conventional Cav1.2, ubiquitously expressed in all heart chambers, and the developmentally regulated Cav1.3, exclusively expressed in the atria, sinoatrial node, and atrioventricular node in the adult heart. As such, Cav1.3 is implicated in the pathogenesis of sinoatrial and atrioventricular node dysfunction as well as atrial fibrillation. More recently, Cav1.3 de novo expression was suggested in heart failure. Here, we review the functional role, expression levels, and regulation of Cav1.3 in the heart, including in the context of cardiac diseases. We believe that the elucidation of the functional and molecular pathways regulating Cav1.3 in the heart will assist in developing novel targeted therapeutic interventions for the aforementioned arrhythmias.

15.
Biochem Biophys Res Commun ; 655: 82-89, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933311

RESUMO

BACKGROUND: Torsade de pointes is a potentially lethal polymorphic ventricular tachyarrhythmia that can occur in the setting of long QT syndrome (LQTS). LQTS is multi-hit in nature and multiple factors combine their effects leading to increased arrhythmic risk. While hypokalemia and multiple medications are accounted for in LQTS, the arrhythmogenic role of systemic inflammation is increasingly recognized but often overlooked. We tested the hypothesis that the inflammatory cytokine interleukin(IL)-6 will significantly increase the incidence of arrhythmia when combined with other pro-arrhythmic conditions (hypokalemia and the psychotropic medication, quetiapine). METHODS: Guinea pigs were injected intraperitoneally with IL-6/soluble IL-6 receptor and QT changes were measured in vivo. Subsequently, hearts were cannulated via Langendorff perfusion for ex vivo optical mapping measurements of action potential duration (APD90) and arrhythmia inducibility. Computer simulations (MATLAB) were performed to investigate IKr inhibition at varying IL-6 and quetiapine concentrations. RESULTS: IL-6 prolonged QTc in vivo guinea pigs from 306.74 ± 7.19 ms to 332.60 ± 8.75 ms (n = 8, p = .0021). Optical mapping on isolated hearts demonstrated APD prolongation in IL-6- vs saline groups (3Hz APD90:179.67 ± 2.47 ms vs 153.5 ± 7.86 ms, p = .0357). When hypokalemia was introduced, the APD90 increased to 195.8 ± 5.02 ms[IL-6] and 174.57 ± 10.7 ms[saline] (p = .2797), and when quetiapine was added to hypokalemia to 207.67 ± 3.03 ms[IL-6] and 191.37 ± 9.49 ms[saline] (p = .2449). After the addition of hypokalemia ± quetiapine, arrhythmia was induced in 75% of IL-6-treated hearts (n = 8), while in none of the control hearts (n = 6). Computer simulations demonstrated spontaneous depolarizations at ∼83% aggregate IKr inhibition. CONCLUSIONS: Our experimental observations strongly suggest that controlling inflammation, specifically IL-6, could be a viable and important route for reducing QT prolongation and arrhythmia incidence in the clinical setting.


Assuntos
Hipopotassemia , Síndrome do QT Longo , Torsades de Pointes , Animais , Cobaias , Torsades de Pointes/induzido quimicamente , Citocinas , Fumarato de Quetiapina , Interleucina-6 , Arritmias Cardíacas , Síndrome do QT Longo/induzido quimicamente , Inflamação/complicações , Eletrocardiografia
16.
Stem Cell Res ; 67: 103037, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739767

RESUMO

Myotonic dystrophy Type 1 (DM1) is a severe inherited neuromuscular disease and is the most prevalent form of muscular dystrophy in adults. DM1 involves not only the striated muscles including skeletal, and cardiac but also other organs such as the eye, brain and gonads. We have generated and characterized 4 adult heterozygous DM1 iPSC lines carrying between 1300 and 1600 CTG repeat expansion in the DM1 protein kinase gene, and a control from an apparently healthy individual. They all show strong pluripotency markers, differentiation capacity, the absence of residual viral vectors as well as normal karyotypes and colony morphologies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Distrofia Miotônica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos , Linhagem Celular , Músculo Esquelético/metabolismo , Miotonina Proteína Quinase/genética
17.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362145

RESUMO

Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.


Assuntos
Distrofia Miotônica , Camundongos , Humanos , Animais , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Transgênicos , Oligonucleotídeos/uso terapêutico , Regiões 3' não Traduzidas , Expansão das Repetições de Trinucleotídeos
18.
J Natl Med Assoc ; 114(6): 569-577, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202634

RESUMO

Junior investigators from groups underrepresented in the biomedical workforce confront challenges as they navigate the ranks of academic research careers. Biochemical research needs the participation of these researchers to adequately tackle critical research priorities such as cardiovascular health disparities and health inequities. We explore the inadequate representation of underrepresented minority investigators and the historical role of systemic racism in impacting their poor career progression. We highlight challenges these investigators face, and opportunities to address these barriers are identified. Ensuring adequate recruitment and promotion of underrepresented biomedical researchers fosters inclusive excellence and augments efforts to address health inequities. The Programs to Increase Diversity among Individuals Engaged in Health-Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI), is a pilot program by the National Institutes of Health (NIH) that aims to address these challenges yet, only a limited number of URM can be accepted to PRIDE programs. Hence the need for additional funding for more PRIDE or PRIDE-like programs. Here we aim to examine the challenges underrepresented minority biomedical investigators face and describe ongoing initiatives to increase URM in biomedical research using the NHLBI-PRIDE program as a focus point.


Assuntos
Pesquisa Biomédica , Mentores , Humanos , Estados Unidos , Pesquisadores , Grupos Minoritários , Recursos Humanos
20.
JMIR Res Protoc ; 11(10): e41602, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130735

RESUMO

BACKGROUND: Approximately every 37 seconds, someone in the United States dies of cardiovascular disease (CVD). It has emerged as an important contributor to morbidity among persons with HIV. Black and Latinx sexual minority men are at higher risk of both HIV and CVD when compared to heterosexual, nonethnic or minority men. Persons with HIV have a 1.5 to 2-times risk of having CVD than do HIV-negative persons. Data suggest that by the year 2030, an estimated 78% of persons with HIV will have CVD. The relationship between HIV and CVD in marginalized populations is not well understood because overall awareness of HIV and CVD as comorbid conditions is low, which further heightens risk. This has created a critically pressing issue affecting underrepresented ethnic and racial populations with HIV and requires immediate efforts to mitigate risk. OBJECTIVE: The purpose of this formative, mixed methods study is to use a community-engaged approach to map a behavioral intervention for CVD prevention in Black and Latinx sexual minority men with HIV in New York City. METHODS: Literature reviews focused on behavioral prevention studies using intervention mapping. In Aim 1, we will use qualitative interviews with HIV program managers and community members to understand facilitators and barriers to CVD prevention, chronic illnesses of concern, and early design elements needed for a web-based CVD prevention intervention. In Aim 2, we will conduct qualitative interviews and administer cross-sectional validated surveys with 30 Black and Latinx sexual minority men with HIV. We will assess illness perceptions of chronic conditions, such as HIV, hypertension, and diabetes. A total of 40 participants (program managers and community members) for Aims 1 and 2 will be enrolled to participate. To develop the protocol, we will follow steps 1 through 3 (needs assessment, change objectives, implementation strategy) of intervention mapping, using mixed methods. RESULTS: The study was approved by New York University Institutional Review Board in February 2021 (IRB-FY2021-4772) and also by the Yale University Institutional Review Board in June 2022 (#2000031577). We anticipate completing data collection on or before December 2022. Early analyses suggested concerns about illnesses outside of HIV and associated comorbid conditions, such as COVID-19 and monkeypox. Additionally, we noted a strong interest in using a web-based platform for CVD prevention education. CONCLUSIONS: Web-based, behavioral, CVD prevention interventions may be promising modalities to closing the cardiovascular health disparities gap in Black and Latinx sexual minority men with HIV by extending the reach of prevention interventions using community-informed approaches and technological modalities that have been underused in this population. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/41602.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...